A model of base-call resolution on broad-spectrum pathogen detection resequencing DNA microarrays

نویسندگان

  • Anthony P. Malanoski
  • Baochuan Lin
  • David A. Stenger
چکیده

Oligonucleotide microarrays offer the potential to efficiently test for multiple organisms, an excellent feature for surveillance applications. Among these, resequencing microarrays are of particular interest, as they possess additional unique capabilities to track pathogens' genetic variations and perform detailed discrimination of closely related organisms. However, this potential can only be realized if the costs of developing the detection microarray are kept at a manageable level. Selection and verification of the probes are key factors affecting microarray design costs that can be reduced through the development and use of in silico modeling. Models created for other types of microarrays do not meet all the required criteria for this type of microarray. We describe here in silico methods for designing resequencing microarrays targeted for multiple organism detection. The model development presented here has focused on accurate base-call prediction in regions that are applicable to resequencing microarrays designed for multiple organism detection, a variation from other uses of a predictive model in which perfect prediction of all hybridization events is necessary. The model will assist in simplifying the design of resequencing microarrays and in reduction of the time and costs required for their development for new applications.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Universal detection and identification of avian influenza virus by use of resequencing microarrays.

Zoonotic microbes have historically been, and continue to emerge as, threats to human health. The recent outbreaks of highly pathogenic avian influenza virus in bird populations and the appearance of some human infections have increased the concern of a possible new influenza pandemic, which highlights the need for broad-spectrum detection methods for rapidly identifying the spread or outbreak ...

متن کامل

Reconstructed Ancestral Sequences Improve Pathogen Identification Using Resequencing DNA Microarrays

We describe the benefit of using reconstructed ancestral sequences (RAS) on resequencing microarrays for rapid pathogen identification, with Enterobacteriaceae rpoB sequences as a model. Our results demonstrate a sharp improvement of call rate and accuracy when using RASs as compared to extant sequences. This improvement was attributed to the lower sequence divergence of RASs, which also expand...

متن کامل

Automated identification of multiple micro-organisms from resequencing DNA microarrays

There is an increasing recognition that detailed nucleic acid sequence information will be useful and even required in the diagnosis, treatment and surveillance of many significant pathogens. Because generating detailed information about pathogens leads to significantly larger amounts of data, it is necessary to develop automated analysis methods to reduce analysis time and to standardize ident...

متن کامل

Model-P: a basecalling method for resequencing microarrays of diploid samples

MOTIVATION Basecalling is a critical step of the analysis of DNA resequencing microarray data for single nucleotide polymorphism discovery and genotyping. For microarrays hybridized with DNA derived from diploid organisms, basecalling with high accuracy at high call rates is a challenging task. Current methods sometimes do not produce satisfactory results. RESULTS We explored using physical m...

متن کامل

Massively parallel pathogen identification using high‐density microarrays

Identification of microbial pathogens in clinical specimens is still performed by phenotypic methods that are often slow and cumbersome, despite the availability of more comprehensive genotyping technologies. We present an approach based on whole-genome amplification and resequencing microarrays for unbiased pathogen detection. This 10 h process identifies a broad spectrum of bacterial and vira...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 36  شماره 

صفحات  -

تاریخ انتشار 2008